Synthesis of Combinational Logic

- Sum of products
- Inverting logic
- Logic minimization
- Karnaugh Maps
- Muxes/Table Lookup
- Read-only Memories

Today’s handouts:
- Lecture slides

Notes:
- Lab #1 due next Thursday
- No lecture next Tuesday
Functional Specifications

There are many ways of specifying the function of a combinational device, for example:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Truth Table

\[Y = \overline{C} \cdot \overline{B} \cdot A + \overline{CBA} + CBA \]

Concise alternatives:

- *truth tables* are a concise description of the combinational system’s function.
- *Boolean expressions* form an algebra whose operations are AND (multiplication), OR (addition), and inversion (overbar).

Any combinational (Boolean) function can be specified as a truth table or an equivalent *sum-of-products* Boolean expression!
Here’s a Design Approach

1. Write out our functional spec as a truth table

2. Write down a Boolean expression with terms covering each ‘1’ in the output:

 \[Y = \overline{C} \overline{B} A + \overline{C} B A + C \overline{B} \overline{A} + C B A \]

3. We’ll show how to build a circuit using this equation in the next two slides.

This approach will always give us Boolean expressions in a particular form: SUM-OF-PRODUCTS
Sum-of-products Building Blocks

INVERTER: \[Z = \overline{A} \]

<table>
<thead>
<tr>
<th>A</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

AND: \[Z = A \cdot B \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

OR: \[Z = A + B \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Straightforward Synthesis

We can implement SUM-OF-PRODUCTS with just three levels of logic:

1. Inverters
2. ANDs
3. OR

Propagation delay -- No more than 3 gate delays?*

*assuming gates with an arbitrary number of inputs, which, as we’ll see, isn’t a good assumption!
ANDs and ORs with > 2 Inputs

Replace 2-input AND gates with 2-input OR gates to create large fan-in OR gates.

Chain: Propagation delay increases linearly with number of inputs

Tree: Propagation delay increases logarithmically with number of inputs

Which one should I use?
More Building Blocks

NAND (not AND)

\[Z = \overline{A \cdot B} \]

\[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array} \]

NOR (not OR)

\[Z = \overline{A + B} \]

\[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
\end{array} \]

In a CMOS gate, rising inputs lead to falling outputs and vice-versa, so CMOS gates are naturally inverting. Want to use NANDs and NORs in CMOS designs... But NAND and NOR operations are not associative, so wide NAND and NOR gate can’t use a chain or tree strategy. Stay tuned for more on this!

XOR (exclusive OR)

\[Z = A \oplus B \]

\[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array} \]

XOR is very useful when implementing parity and arithmetic logic. Also used as a “programmable inverter”: if \(A=0 \), \(Z=B \); if \(A=1 \), \(Z=\overline{B} \)

Wide fan-in XORs can be created with chains or trees of 2-input XORs.
Universal Building Blocks

NANDs and NORs are universal:

Any logic function can be implemented using only NANDs (or, equivalently, NORs). Good news for CMOS technologies!
CMOS ❤️ Inverting Logic

See “The Standard Cell Library” handout.

AND4:
\[t_{PD} = 160 \text{ ps}, \text{ size} = 20\mu^2 \]

NAND4 + INV:
\[t_{PD} = 90 \text{ ps}, \text{ size} = 27\mu^2 \]

Demorgan’s Laws:
\[
\begin{align*}
\overline{A \cdot B} &= \overline{A} + \overline{B} \\
\overline{A + B} &= \overline{A} \cdot \overline{B}
\end{align*}
\]

2*NAND2 + NOR2:
\[t_{PD} = 80 \text{ ps}, \text{ size} = 30\mu^2 \]
Wide NANDs and NORs

Most logic libraries include 2-, 3- and 4-input devices:

But for a large number of inputs, the series connections of too many MOSFETs can lead to very large effective R_{PD} or R_{PU}. Design note: use trees of smaller devices...
CMOS Sum-of-products Implementation

NAND-NAND

\[\overline{AB} = \overline{A} + \overline{B} \]

“Pushing Bubbles”

NOR-NOR

\[\overline{AB} = A + B \]

\[\overline{A} \overline{C} + AB + BC \]

You might think all these extra inverters would make this structure less attractive. However, quite the opposite is true.

\[A\overline{C} + AB + BC \]
Logic Simplification

Can we implement the same function with fewer gates? Before trying we’ll add a few more tricks in our bag.

BOOLEAN ALGEBRA:

OR rules: \(a + 1 = 1, \ a + 0 = a, \ a + a = a \)

AND rules: \(a1 = a, \ a0 = 0, \ aa = a \)

Commutative: \(a + b = b + a, \ ab = ba \)

Associative: \((a + b) + c = a + (b + c), \ (ab)c = a(bc) \)

Distributive: \(a(b+c) = ab + ac, \ a + bc = (a+b)(a+c) \)

Complements: \(a + a = 1, \ a\overline{a} = 0 \)

Absorption: \(a + ab = a, \ a + \overline{ab} = a + b \) \(a(a + b) = a, \ a(\overline{a} + b) = ab \)

Reduction: \(\boxed{ab + \overline{ab} = b}, \ (a + b)(\overline{a} + b) = b \)

DeMorgan’s Law: \(\overline{a + b} = \overline{ab}, \ \overline{ab} = a + b \)
Boolean Minimization

Let’s (again!) simplify

\[Y = \overline{CBA} + CB\overline{A} + CBA + \overline{CBA} \]

Using the identity

\[\alpha A + \alpha \overline{A} = \alpha (A + \overline{A}) = \alpha \cdot 1 = \alpha \]

For any expression \(\alpha \) and variable \(A \):

\[Y = \overline{CBA} + CB\overline{A} + CBA + \overline{CBA} \]

\[Y = \overline{CBA} + CB + \overline{CBA} \]

\[Y = \overline{CA} + CB \]

Can’t he come up with a new example???

Hey… I could write a program to do that
Truth Tables with “Don’t Cares”

One way to reveal the opportunities for a more compact implementation is to rewrite the truth table using “don’t cares” (− or X) to indicate when the value of a particular input is irrelevant in determining the value of the output.

<table>
<thead>
<tr>
<th>C</th>
<th>B</th>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>B</th>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: Some input combinations (e.g., 000) are matched by more than one row in the “don’t care” table. It would be a bug if all the matching rows didn’t specify the same output value!
The Case for a Non-minimal SOP

\[Y = \overline{C}A + CB \]

NOTE: The steady state behavior of these circuits is identical. They differ in their transient behavior.

That’s what we call a “glitch” or “hazard”
Karnaugh Maps: A Geometric Approach

K-Map: a truth table arranged so that terms which differ by exactly one variable are adjacent to one another so we can see potential reductions easily.

<table>
<thead>
<tr>
<th>C</th>
<th>B</th>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Here’s the layout of a 3-variable K-map filled in with the values from our truth table:

<table>
<thead>
<tr>
<th>C\AB</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

It’s cyclic. The left edge is adjacent to the right edge. (It’s really just a flattened out cube).
Extending K-maps to 4-variable Tables

4-variable K-map $F(A,B,C,D)$:

<table>
<thead>
<tr>
<th>(AB)</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Again it’s cyclic. The left edge is adjacent to the right edge, and the top is adjacent to the bottom.

For functions of 5 or 6 variables, we’d need to use the 3rd dimension to build a 4x4x4 K-map. But then we’re out of dimensions...
Finding Implicants

An implicant

- is a rectangular region of the K-map where the function has the value 1 (i.e., a region that will need to be described by one or more product terms in the sum-of-products)
- has a width and length that must be a power of 2: 1, 2, 4
- can overlap other implicants
- is a prime implicant if it is not completely contained in any other implicant.

• can be uniquely identified by a single product term. The larger the implicant, the smaller the product term.
Finding Prime Implicants

We want to find all the prime implicants. The right strategy is a greedy one.

- Find the uncircled prime implicant with the greatest area
 - Order: 4x4 ⇒ 2x4 or 4x2 ⇒ 4x1 or 1x4 or 2x2 ⇒ 2x1 or 1x2 ⇒ 1x1
 - Overlap is okay
- Circle it
- Repeat until all prime implicants are circled
Write Down Equations

Picking just enough prime implicants to cover all the 1’s in the KMap, combine equations to form minimal sum-of-products.

\[
\begin{array}{c|c|c|c|c|c}
C \setminus AB & 00 & 01 & 11 & 10 \\
\hline
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 \\
\end{array}
\]

\[Y = A\overline{C} + BC\]

\[
\begin{array}{c|c|c|c|c|c}
\setminus AB \setminus CD & 00 & 01 & 11 & 10 \\
\hline
00 & 0 & 1 & 1 & 1 \\
01 & 1 & 1 & 1 & 1 \\
11 & 1 & 1 & 1 & 1 \\
10 & 1 & 0 & 0 & 1 \\
\end{array}
\]

\[Y = D + B\overline{C} + A\overline{C} + \overline{BC}\]

\[
\begin{array}{c|c|c|c|c|c}
\setminus CD \setminus AB & 00 & 01 & 11 & 10 \\
\hline
00 & 0 & 1 & 1 & 1 \\
01 & 1 & 1 & 1 & 1 \\
11 & 1 & 1 & 1 & 1 \\
10 & 1 & 0 & 0 & 1 \\
\end{array}
\]

\[Y = D + B\overline{C} + A\overline{B} + \overline{BC}\]

We're done!

Minimal SOP is not necessarily unique!
Prime Implicants, Glitches & Leniency

This circuit produces a glitch on Y when A=1, B=1, C: 1→0

<table>
<thead>
<tr>
<th>C \ AB</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

To make the circuit lenient, include product terms for ALL prime implicants.

\[Y = \overline{C}A + CB \]
We’ve Been Designing a Mux

2-input Multiplexer

MUXes can be generalized to 2^k data inputs and k select inputs ...

Truth Table

<table>
<thead>
<tr>
<th>S</th>
<th>D₁</th>
<th>D₀</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

... and implemented as a tree of smaller MUXes:
Consider implementing some arbitrary Boolean function, \(F(A,B,C) \) ... using a MULTIPLEXER as the only circuit element:

Full-Adder

Carry Out Logic

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C(_{in})</th>
<th>C(_{out})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

![Multiplexer Diagram]
Generalizing:
In theory, we can build any 1-output combinational logic block with multiplexers.

For an N-input function we need a 2^N input mux.

Is this practical for BIG truth tables? How about 10-input function? 20-input?
A New Combinational Device

DECODER:
- k SELECT inputs,
- $N = 2^k$ DATA OUTPUTs.

Select inputs choose one of the D_j to assert HIGH, all others will be LOW.

NOW, we are well on our way to building a general purpose table-lookup device.

We can build a 2-dimensional ARRAY of decoders and selectors as follows ...

Have I mentioned that HIGH is a synonym for ‘1’ and LOW means the same as ‘0’
Read-only Memory (ROM)

For K inputs, decoder produces 2^K signals, only 1 of which is asserted at a time -- think of it as one signal for each possible product term.

Each column is large fan-in “NOR.” Note location of pulldowns correspond to a “1” output in the truth table!

Full Adder

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Ci</th>
<th>S</th>
<th>Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Shared decoder

One column for each output
Read-only Memory (ROM)

Full Adder

\[
\begin{array}{ccc}
A & B & C_i \\
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{ccc}
S & C_o \\
0 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 1 \\
0 & 1 \\
1 & 0 \\
1 & 1 \\
\end{array}
\]

Each column is large fan-in “NOR.” Note location of pulldowns correspond to a “1” output in the truth table!

For K inputs, decoder produces \(2^K\) signals, only 1 of which is asserted at a time -- think of it as one signal for each possible product term.

One column for each output
Read-only Memory (ROM)

Full Adder

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C_i</th>
<th>S</th>
<th>C_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

LONG LINES slow down propagation times...

The best way to improve this is to build *square arrays*, using some inputs to drive output selectors (MUXes):

2D Addressing: Standard for ROMs, RAMs, logic arrays...
Logic According to ROMs

ROMs *ignore* the structure of combinational functions ...
- Size, layout, and design are independent of function
- Any Truth table can be “programmed” by minor reconfiguration:
 - Metal layer (masked ROMs)
 - Fuses (Field-programmable PROMs)
 - Charge on floating gates (EPROMs)
 ... etc.

ROMs tend to generate “glitchy” outputs. WHY?

Model: LOOK UP value of function in truth table...
Inputs: “ADDRESS” of a T.T. entry
ROM SIZE = # TT entries...
... for an N-input boolean function, size \(\approx 2^N \times \#\text{outputs} \)
Summary

• Sum of products
 • Any function that can be specified by a truth table or, equivalently, in terms of AND/OR/NOT (Boolean expression)
 • “3-level” implementation of any logic function
 • Limitations on number of inputs (fan-in) increases depth
 • SOP implementation methods
 • NAND-NAND, NOR-NOR

• Muxes used to build table-lookup implementations
 • Easy to change implemented function -- just change constants

• ROMs
 • Decoder logic generates all possible product terms
 • Selector logic determines which terms are ORed together